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We investigate experimentally the two-dimensional flow of a shear-thickening suspension
around a rotating cylinder to which a constant torque is applied. While for low torques both
the drag and the flow are steady and close to those for a Newtonian fluid, above the onset
torque for discontinuous shear thickening the average velocity of the cylinder saturates
and large periodic oscillations of the cylinder velocity are observed. The oscillations
result from a hydrodynamic instability of the flow: slow-acceleration phases are followed
by high-deceleration phases, triggered by the propagation of a thickening front, and
so on. The slow-acceleration phases set the oscillation period, which is limited by the
cylinder inertia and inversely proportional to the applied torque. Combined analyses
of the cylinder motion and the flow reveal that the front typically nucleates when the
shear rate at the cylinder surface reaches the discontinuous shear-thickening threshold. In
addition, the characteristics (duration, stress) of the deceleration are set by the interplay
between the thickening front propagation and the suspension and cylinder inertiae or
the container size. Since for a slow acceleration the shear rate at the cylinder surface is
essentially the cylinder angular velocity, this description of the unsteadiness elucidates the
saturation of the average velocity. More generally, it illustrates how the hydrodynamics of
a shear-thickening suspension with a strongly re-entrant rheology can lead to a marginally
re-entrant, although steep, drag curve.

Key words: suspensions, Taylor-Couette flow

1. Introduction
Dense suspensions of microscopic particles are often steeply shear-thickening media. This
peculiar rheology has been interpreted fruitfully as a frictional transition driven by the
stress level between the particles (Seto et al. 2013; Mari et al. 2014; Wyart & Cates 2014)
and has received important numerical and experimental confirmations (Guy, Hermes &
Poon 2015; Lin et al. 2015; Clavaud et al. 2017; Comtet et al. 2017; Dong & Trulsson
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2017; Singh et al. 2018; Clavaud, Metzger & Forterre 2020). On the other hand, much less
is known about simple hydrodynamics questions such as the unsteady structures of the
flow, the spatial and temporal fluctuations of the stresses, the role of the suspension inertia
or the mechanism which selects the effective drag in the regime when the suspension
shear thickens. Progress on these questions would be helpful, practically, for optimizing
the transport and flowability of shear-thickening suspensions (LaFarge 2013; Abdesselam
et al. 2017; Blanco et al. 2019). They might also be useful to appreciate and push the limits
of rheological characterizations.

Important results have already been obtained for the flow around a solid displaced
with a constant force. Eighty years ago, Freundlich & Röder (1938) reported that the
average velocity of a sphere displaced in a shear-thickening suspension inside a narrow
tube becomes independent of the applied force for high loads, while the instantaneous
velocity is not steady but oscillates around the average value. Later, the oscillations were
modelled based on a heuristic drag law (von Kann, Snoeijer & van der Meer 2013) but
the reality of this drag law and how it actually emerges from the unsteady flow past
the sphere still need to be clarified. Recently, numerous studies on small-gap rheological
configurations have reported similar saturations of the average velocity of the tool, as well
as oscillations under a constant applied torque (Boersma et al. 1991; Lootens, Van Damme
& Hébraud 2003; Nagahiro, Nakanishi & Mitarai 2013; Hermes et al. 2016; Rathee, Blair
& Urbach 2017; Chacko et al. 2018; Saint-Michel, Gibaud & Manneville 2018; Richards
et al. 2019; Ovarlez et al. 2020; Sedes, Singh & Morris 2020; Gauthier et al. 2021).
Such oscillations have been modelled, first, by Nakanishi & Mitarai (2011) and Nakanishi,
Nagahiro & Mitarai (2012), who have introduced two key elements: a shear-thickening
steady-state rheology with a negatively sloped portion (∂σ/∂γ̇ < 0, with σ and γ̇ the
shear stress and shear rate, respectively) and a delayed relaxation to the equilibrium state
(involving an intrinsic strain scale, γ0). Combined with the inertia of the flow, the shear
weakening (∂σ/∂γ̇ < 0) is destabilizing, while the delay regularizes the instability at
small wavelengths (short time scales). Later, Richards et al. (2019) added the inertia of the
tool to the modelling. However, their model treats the suspension as uniform and spaceless,
which does not capture the heterogeneous structures of the flow observed in experiments
(Rathee et al. 2017; Ovarlez et al. 2020; Gauthier et al. 2021; Rathee et al. 2022) and
requires the introduction of a second relaxation scale (intrinsic time scale) to obtain the
periodic oscillations reported experimentally. Last, additional heuristic modifications of
the rheology have also been proposed to capture the saturation of the mean velocity of the
tool (Baumgarten & Kamrin 2019), but these modifications are equivalent to changing the
steady-state rheology and disregard the oscillatory nature of the mean velocity saturation.

Other important results have been obtained about the impulsive dynamics under
an imposed displacement. Experiments of indentation into a bulk or floated layer of
suspension (Waitukaitis & Jaeger 2012; Waitukaitis et al. 2013; Peters & Jaeger 2014;
Peters, Majumdar & Jaeger 2016) have revealed that, for impulsive motion, the transport
of shear inside the suspension is not diffusive anymore, but involves steep propagative
thickening fronts, termed jamming or shear fronts. The latter have been rationalized as
kinematic shocks stemming from the shear-weakening rheology and a relaxation strain
scale (γ0) (Han et al. 2018). However, it remains to understand how these shocks nucleate
and decay, the history of stress they impose on the flow, how their propagation interacts
with the motion of the solid and how all these phenomena actually set the drag on the
solid.

In this paper, we address those hydrodynamic questions through experiments on the flow
of a floated layer of shear-thickening suspension (cornstarch) around a rotating cylinder to
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Figure 1. Experimental set-up. (a) Sketch of the set-up. (b) Typical view of the cylinder (red), tracer-seeded
suspension layer (black and white background) and measured flow field (arrows).

which a constant torque is applied. This configuration has several advantages. The flow in
the suspension layer, floated above a non-miscible low-viscosity oil (Peters et al. 2016), is
essentially two-dimensional, which gives access to local and instantaneous measurements
of the suspension flow and facilitates the evaluation of the stresses. Importantly, it is also
a model configuration for the dynamics of a solid moved inside a fluid, with a simple but
non-uniform base-state flow, from which the fundamental aspects of the solid motion and
its interaction with the flow can be addressed.

The manuscript is organized as follows. Section 2 presents the experimental set-up.
Section 3.1 introduces the overall behaviour in the different flow regimes. Sections 3.2
and 3.3 analyse the steady regime observed for low torques and each phase of the
oscillatory regime observed for high torques, respectively. Section 3.4 comments on how
the dynamics of the two regimes sets the curve of the effective drag of the suspension on
the cylinder. Last, a discussion is given in § 4.

2. Experimental set-up
The experimental set-up is sketched in figure 1(a). It consists of a cylinder of radius
R = 14.05 mm immersed in a layer of an aqueous suspension of cornstarch particles
(Agrana Starch Maisita) contained in a cylindrical vessel with radius Rout = 95.0 mm.
The cylinder is driven in rotation by a rheometer head (Anton Paar MCR 501), which
applies a controlled torque Γ to the cylinder and measures the current angular velocity
Ω(t) (the actual torque delivered by the rheometer remains constant to within less than
1 %). The suspension layer, of thickness h, is floated on a Perfluorotributylamine bath (3M,
Fluorinert), which is a water-non-miscible, high density (1.86 g cm−3) and low-viscosity
(4 mPa s) liquid. This ensures a close to stress-free boundary condition at the bottom of
the suspension layer and a quasi-two-dimensional experimental configuration (Peters et al.
2016; Han et al. 2018). To avoid slippage, the vertical surfaces of both the cylinder and the
outer wall are roughened with sandpaper (3M, P100).

The suspension layer is imaged from below, through the transparent bath, using an
inclined mirror and a high-speed camera (Phantom v711) operating at 500 f.p.s. The flow
is monitored by seeding the suspension/bath interface with black glass tracers (diameter of
40–70 µm). The velocity field, u = urer + uθeθ , is measured with conventional particle
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Figure 2. Rheology of the suspension. (a) Shear stress vs shear rate for different volume fractions, φ.
(b) Frictionless and frictional viscosity branches obtained from low and high shear-rate measurements,
respectively. (a,b) Symbols stand for measurements with the small-gap cylindrical Couette device. Lines show
the fitting Wyart–Cates law (see text).

image velocimetry (PIV) methods. A typical image of the layer and of the measured flow
field is shown in figure 1(b).

The suspension rheology is measured with a small-gap cylindrical Couette rheometer
(figure 2). The suspension is pre-sheared with a constant shear rate of 0.1 s−1 for 30 s,
after which an increasing logarithmic sweep in torque is imposed and shear rates are
obtained by averaging over sufficient durations to be independent of the sweep. The
resultant data set is fitted with the Wyart–Cates flow rule, η(φ) = ηS(φJ(σ ) − φ)−2 and
φJ(σ ) = φ0(1 − e−σ)/σ ) + φ1 e−σ)/σ , where ηS is a numerical factor, φJ denotes the
suspension jamming volume fraction, φ0 and φ1 are the jamming volume fractions of the
frictionless and the frictional viscosity branches, respectively, and σ) is the onset shear
stress for frictional contact activation (Wyart & Cates 2014). We use the same fitting
procedure as described in Darbois Texier et al. (2020), which yields ηS " 0.60 mPa s,
φ0 " 0.480, φ1 " 0.407 and σ) " 7.0 Pa, i.e. φDST = φ0 − 2 e−1/2(φ0 − φ1) " 0.390 for
the onset volume fraction of discontinuous shear thickening (figure 2). All experiments
are performed at a fixed volume fraction φ = 0.44 > φ1, for which the fitted suspension
rheology is not only re-entrant (∂σ γ̇ < 0) above the critical stress σc " 3.0 Pa (defined
by ∂σ γ̇ |σc = 0) and critical shear rate γ̇c " 5.4 s−1, but is actually expected to jam
above the shear stress σJ = σ ∗/ ln((φ0 − φ1)/(φ0 − φ)) " 11.6 Pa. The volume fraction
is computed from the dry mass of starch assuming a fixed starch density of 1.55 g cm−3.
The suspension is thoroughly mixed between each run to homogenize the volume fraction
and avoid bias due to sedimentation.

It should be noted that, while measurements at the microscopic scale support the
frictional transition scenario for cornstarch suspensions (Comtet et al. 2017), their
rheology is more complex than the simple Wyart–Cates model, raising the possibility of a
more complex scenario (Gauthier, Ovarlez & Colin 2023). In particular, the cornstarch
rheology exhibits yield stress and aging, due to adhesion between the particles (Fall
et al. 2008, 2012; Oyarte Galvez, van der Meer & Pons 2017). A generalization of the
Wyart–Cates model including adhesion has been proposed (Guy et al. 2015), but its
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Figure 3. The two regimes of cylinder motion (φ = 0.44 > φDST ). (a) Applied torque vs angular velocity of
the cylinder for a slowly increasing ramp of applied torque (h = 15 mm). (b) Time evolution of the cylinder
speed for constant torques applied at t = 0 s (Γ /Γc = 0.36, 0.72, 1.07, 1.43 and 1.79, highlighted by dashed
lines in (a)). See also supplementary movie 1.

application to cornstarch is still debated. In the present study, the main ingredients of the
Wyart–Cates framework, i.e. a quasi-Newtonian low-stress branch followed by a jamming
transition at high stress, will prove sufficient to describe observations.

3. Results

3.1. Overall behaviour of the cylinder dynamics
To obtain the typical dynamics of the cylinder for a broad range of applied torques, Γ , we
consider, first, a protocol where Γ is increased sufficiently slowly such that the cylinder
motion and the flow both adjust to the current forcing at all times. Figure 3(a) shows the
angular velocity of the cylinder, Ω , for torques ranging from ≈ 0.2Γc to over 90Γc, where
Γc ≡ 2πhR2σc " 56 µN m is the critical torque for which the average stress at the cylinder
surface (r = R) is equal to the onset stress of discontinuous shear thickening σc " 3.0 Pa,
with h = 15 mm. Below Γc, the velocity increases monotonically with increasing torque
in a quasi-Newtonian fashion. By contrast, above Γc, the velocity is found to saturate, on
average, at a value close to 4 rad s−1, even though the torque is further increased by almost
two orders of magnitude. Concomitantly, large-amplitude oscillations in Ω are observed.
The ramp is not extended to higher torques because large out-of-plane deformations of the
suspension layer are observed there.

The temporal dynamics of the cylinder in the low and large torque regimes is illustrated
in figure 3(b) for a constant torque applied at t = 0 s, which is the case we will consider in
the rest of the paper. Below Γc (blue disks) the cylinder velocity increases monotonically
from 0 to its equilibrium steady value. Conversely, sufficiently above Γc (Γ ! 1.4Γc, pink
squares, see also supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.624)
the motion is found to be unsteady at all times. After a short initial transient of a few cycles,
the motion settles down to periodic oscillations, with short and steep decreases in velocity
separated by much slower and longer increases.

In the following, we consider successively the steady regime obtained for low torques
and the oscillations observed for high torques.
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Figure 4. Low-torque steady regime: local rheology and onset of unsteadiness (h = 15 mm). (a) Steady
velocity field around the cylinder for a constant applied torque Γ = 0.30Γc. (b) Radial profiles of the azimuthal
velocity for Γ /Γc = 0.35, 0.70 and 1.10. Solid lines: Newtonian profiles given by (3.1). (c) Corresponding
local shear stress vs local shear rate. Solid line: Wyart–Cates flow rule fitting the global rheometry in figure 2
(φ = 0.44). Red dashed line: onset shear stress of discontinuous shear thickening, σc.

3.2. Low-torque steady regime
The low-torque steady regime allows us to verify precisely the suspension rheology
from local in situ measurements. For each constant-torque experiment in the low-torque
regime we measure the steady flow field of the suspension (figure 4a) and extract the
radial profile of the azimuthal velocity component, uθ (r) (figure 4b). The velocity is
found to vanish beyond a no-flow radius Ry (= 20.6, 34.9 and 47.2 mm, respectively, for
Γ /Γc = 0.35, 0.70 and 1.10), which suggests that the suspension has a small yield stress,
σy = Γ /(2πhR2

y) " 0.38 ± 0.11 Pa, with a value in good agreement with those already
reported for aqueous cornstarch suspensions at similar volume fractions (Fall et al. 2008,
2012). Nevertheless, in the flowing region near the cylinder, the velocity profiles are found
to match closely the steady Newtonian profile

uθ (r)
ΩR

=






r
R

1/r2 − 1/Ry
2

1/R2 − 1/Ry
2 , r ≤ Ry,

0, r ≥ Ry,

(3.1)

which is represented by solid lines in figure 4(b). This indicates that, in spite of the
non-uniform stress field (σ (r) ∝ 1/r2), no significant effect of shear-induced migration
is observed in the low-torque regime, in agreement with previous observations (Fall et al.
2008, 2012). Equivalently, the close to Newtonian behaviour of the suspension (above σy)
is illustrated in figure 4(c), which presents the local stress, σ (r) = Γ /(2πhr2), assuming
steadiness and rotational invariance, as a function of the shear rate, γ̇ (r) = −r∂r(uθ/r),
measured locally from the flow. The measurements obtained for different applied torques
and different radii collapse on the same quasi-Newtonian flow curve, which matches
(above σy) the frictionless part of the Wyart–Cates flow rule obtained from the global
rheology measurements of figure 2. The match is fairly good up to the largest stress,
σ " 3 Pa, that can be reached in the steady regime.

Importantly, this latter value also matches the discontinuous shear-thickening onset
(σc " 3.0 Pa) obtained from the global rheograms (figure 2). This indicates that
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Figure 5. High-torque unsteady regime. (a) Long-time evolution of the cylinder velocity (rheometer
measurements, Γ = 3.5Γc, h = 35 mm). Solid-line: (3.3) for the acceleration phases. (b,c) Focus on a
deceleration phase resolved with high-speed imaging. Here, t = 0 stands for the onset of deceleration (Ω̇ = 0).
(b) Cylinder velocity normalized by the velocity, Ωc, at the deceleration onset. (c) Deceleration (left-hand
vertical axis) and shear stress at the cylinder surface normalized by the discontinuous shear-thickening stress,
σc (right-hand).

unsteadiness is triggered by the discontinuous shear thickening of the suspension at the
cylinder surface and that the onset condition is approximately σ (R) " σc, or equivalently,
Γ " Γc. The instability mechanism, per se, will be clarified in the following sections.

3.3. High-torque unsteady regime
We turn, now, to the periodic oscillations observed for a constant applied torque exceeding
Γc, starting with the slow-acceleration phases of the oscillations.

3.3.1. Slow-acceleration phases
The slow-acceleration phases are visco-inertial transients. They can be described simply
by considering the inertia of the cylinder, the constant applied torque and the frictionless
Newtonian-effective drag of the suspension. Angular momentum theorem applied to the
cylinder implies

IΩ̇ = Γ − 2πhR2σ (R, t), (3.2)

with I = 104 ± 1 µN m s2 the angular moment of inertia of the cylinder plus rotor of
the rheometer, which is characterized using an in-built function of the rheometer (when
the cylinder is in air). During the acceleration the shear stress is below σc everywhere
in the suspension, momentum has time to diffuse across the flow (ρR2/η0 ∼ 10−1s *
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Ω/Ω̇ ∼ 1 s, with ρ " 1240 kg m−3 the suspension density and η0 " 0.38 Pa s the
non-frictional viscosity of the suspension) and the inertia of the flowing part of the liquid
(∼ ρhR4 ∼ 10−7 N m s2) is much smaller than the cylinder inertia (I ∼ 10−4 N m s2).
This means that the shear stress at the cylinder surface is almost equal to the steady,
frictionless, Newtonian-effective value, σ (R, t) " η0γ̇ (R, t) " 2η0Ω(t), with γ̇ (R, t) "
2Ω(t) the steady shear rate for a large gap (see (3.1) in the limit R/Ry * 1). Integrating
(3.2) with σ (R, t) = 2η0Ω(t) gives

Ω(t) = Γ

4πη0hR2 (1 − e− Γc
Γ

t−t′
τacc ), with τacc = Iσc

2η0Γ
, (3.3)

which is found to agree quantitatively with the measured acceleration phases, as shown in
figure 5(a).

3.3.2. Transitions from slow accelerations to fast decelerations
During the acceleration phase, the rate of acceleration of the cylinder decreases, which
means that the stress, (Γ − IΩ̇)/2πhR2, actually transmitted to the suspension increases,
until a value of approximately σc is reached. Because of the slowness of the acceleration
the condition is reached for

Ω(t) = Ωc ≈ γ̇c/2, (3.4)

after the typical acceleration time (Γ /Γc) ln(1/(1 − Γc/Γ ))τacc set by (3.3). Equation
(3.4) is valid for a suspension that would be strictly Newtonian up to σc. In practice,
there is a continuous shear thickening for stresses just below σc, which augments the
actual value of Ωc relative to γ̇c/2. For the volume fraction we consider (φ = 0.44),
the critical steady cylinder velocity based on the Wyart–Cates rheology (given by Ωc =∫ ∞

R (γ̇ dr/r) = 1
2
∫ σc

0 (dσ/η)) is Ωc " 1.35γ̇c/2. This value is found to be within a factor
2 of the critical velocity, Ωc ≈ 2γ̇c/2, observed experimentally, with no trend on the
suspension layer thickness (see inset of figure 7c).

Besides this non-trivial relation between the stress level at the cylinder, σ (R), and the
steady velocity, Ω , it must be noticed that the condition for unsteadiness is presumably
more complex than σ (R) ≥ σc. As will be discussed in § 4, the criterion is actually
expected to depend slightly on the Reynolds number of the flow, as well as on the mode of
destabilization. This latter point brings us to the fast-deceleration phases.

3.3.3. Fast-deceleration phases
The deceleration between two acceleration cycles lasts only a fraction of a second, which
is shorter than the temporal resolution of the rheometer. To resolve the dynamics we use
high-speed imaging of the cylinder and a PIV procedure, which yield both time-resolved
measurements of the cylinder velocity Ω(t) and the average stress at the cylinder surface,
σ (R, t) = (Γ − IΩ̇)/2πhR2, from the measured deceleration rate, Ω̇ . A typical evolution
of Ω(t), Ω̇(t) and σ (R, t) is shown in figure 5. The cylinder decelerates from Ωc ≈ 7.5
to approximately 2 rad s−1 within approximately 0.1 s. This indicates that the drag of the
suspension increases steeply. The average stress, σ |r=R, peaks at almost 102σc, which is
approximately 30 times as large as the constant stress, Γ /2πhR2, applied by the rheometer
and is much larger than the shear stress, σJ ≈ 10 Pa, at which the suspension jams,
according to the fitted Wyart–Cates rheology.

To understand the peak of drag experienced by the cylinder, the flow of the suspension
has to be considered. Figure 6(a) presents the evolution of the suspension velocity field
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Figure 6. Spatio-temporal analysis of a deceleration phase (Γ = 3.5Γc, h = 35 mm). (a) Velocity fields at
t = 8, 28, 48 and 68 ms after the cylinder has started decelerating (t = 0, see also supplementary movie 2).

Colour encodes the relative norm of the velocity,
√

u2
θ + u2

r /RΩc. (b) Radial profiles of the azimuthal velocity
component in the direction where the thickening front nucleates and propagates (white arrow in a). (c–e) Time
evolution of the thickening front position (c), of the cylinder velocity normalized by the deceleration onset
velocity (d) and of the cylinder deceleration rate (e). Red dashed line: arrival time, tout, of the front at the outer
(vessel) wall. Green-dashed line: release time, trel, at which the next acceleration phase starts.

measured during the deceleration phase (see also supplementary movie 2). It shows that
the beginning of the cylinder deceleration (Ω̇ = 0, defining t = 0) coincides with the
emergence of a velocity front, which propagates from the cylinder to the outer wall
with a velocity of order 1 m s−1. The front is found to nucleate over a small portion of
the cylinder surface. After a short transient that will be discussed below, it propagates
within an angular sector of approximately 180◦ around the nucleation direction (the latter
being random with respect to both the cylinder and the laboratory). As shown from
the velocity profiles along the front propagation direction presented in figure 6(b), this
velocity front is also a ‘thickening’ front separating an inner high-stress and low-shear
(thickened) region from the outer, unperturbed, low-stress region. The corresponding
thickening front position, Rf , the cylinder angular velocity, Ω , and the deceleration, −Ω̇ ,
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Figure 7. Early part of the deceleration phase: maximal deceleration. (a) Normalized maximal deceleration
of the cylinder or, equivalently, maximal shear stress in the suspension vs thickness of the suspension layer.
(b) Maximal deceleration time normalized by the front arrival time at the outer wall, tout, vs h. (c) Normalized
velocity of the cylinder during a deceleration phase (h = 35 mm). Insets from top to bottom: cylinder
velocity at the onset of deceleration, front velocity and front angular width, ∆θ , vs h. (a–c) The pink solid
lines show ((3.7)–(3.10a,b)) with tout = (Rout − R)/Vf for a homogeneous nucleation of the thickening front
(Rf (t)/R = 1 + Vf t). The black dashed lines show the same equations for a localized nucleation (Rf (t)/R =
1 +

√
L2 + (Vf t)2 − L with L2 = R2 + (h/2)2, see text).

are plotted vs time in figure 6(c–e), respectively (the front position is defined as the radius,
in the front propagation direction, at which uθ = RΩ/2). These analyses confirm that the
deceleration phase is triggered by the inception of the thickening front and show that the
front propagates at a close to constant speed, Vf , which is transverse to the suspension
velocity and much larger than the latter. This front is of the same nature as those termed
jamming or shear fronts, reported previously in imposed-velocity configurations (Peters &
Jaeger 2014; Peters et al. 2016). For high levels of stress these fronts have been rationalized
as kinematic shocks with a typical shock width, ∼ 10η0/ρVf , limited by viscosity, and
a typical propagation velocity, Vf ∼ ∆u/γ0, proportional to the increment of transverse
velocity of the suspension across the shock, ∆u, and with the inverse of the relaxation
strain scale, γ0 (Han et al. 2018). The fronts observed in the present study are found to
match these scalings. The typical shock width, ≈ 10 mm, is of order 10η0/ρVf ∼ 5 mm,
and the relative propagation velocity, Vf /RΩc ≈ 7, is consistent with reported values
(Peters & Jaeger 2014; Han et al. 2018).

The important point, now, is to elucidate how the interaction between the front
propagation and the cylinder motion sets the oscillation and the effective drag of the
suspension. To do so, we model the velocity field and the stresses based on the features
of the front observed experimentally. We assume that the velocity of the suspension
remains essentially azimuthal (uθ . ur), that the front is sharp, such that the shear
stress immediately upstream of the thickening front vanishes (σ |r>Rf * ρVf uθ ), that
azimuthal stress gradients can be neglected and that the angular momentum imparted by
the rheometer during the deceleration is small (Γ × 0.1 s * IΩc). In this case, angular
momentum conservation of the cylinder and the suspension gives

IΩ(t) + S(t)Ω(t) = IΩc, (3.5)

where IΩc is the initial angular momentum of the cylinder (before deceleration) and
IΩ(t) and S(t)Ω(t) are the current momenta of the cylinder and of the suspension
in the thickened region, respectively. Equation (3.5) simply expresses that the cylinder
slows down as it shares momentum with the thickened region. Experimental observations
(figure 6a) indicate that the front propagates typically over a half-space, i.e. within an
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Drag of a shear-thickening suspension on a rotating cylinder

angle span ∆θ ≈ π. Inside the thickened region (r < Rf (t)) the azimuthal velocity is
roughly uniform and close to RΩ(t) (figure 6b). Based on these observations the angular
momentum of the suspension reads

S(t)Ω(t) = ∆θρhR
3

(R3
f (t) − R3)Ω(t), (3.6)

and, from (3.5), the cylinder velocity is expected to follow

Ω(t) = Ωc

1 + α[R3
f (t)/R3 − 1]

, where α = ∆θρhR4

3I
(3.7)

represents the characteristic angular moment of inertia of the suspension (at scale R)
relative to that of the cylinder. Considering Rf (t) = R + Vf t, as a consequence of the
approximately constant front speed, Vf (figure 6c), gives the following time evolution:

Ω(t) = Ωc

1 + [(α1/3 + t/τdec)3 − α]
, with τdec = R

Vf
α−1/3. (3.8)

In the present case, where the cylinder inertia is large (α−1 ! 102 in the experiments), the
maximal deceleration rate is

− Ω̇max " 24/3

3
Ωc

τdec
∼

(
∆θρhR4

I

)1/3 Vf Ωc

R
, (3.9)

which is reached at

Rf ,max " (2α)−1/3R, and tmax " (2−1/3 − α1/3)τdec ∼ τdec, (3.10a,b)

when the moment of inertia of the thickened region (∼ ∆θρhRRf
3) compares with I.

Equation (3.9) indicates that the maximal deceleration is expected to scale with the
suspension layer thickness as −Ω̇max ∝ h1/3 or, equivalently, that the maximal stress,
σmax ∝ −Ω̇max/h, follows h−2/3. We test this prediction experimentally by varying h
systematically from 6 to 35 mm, which is the thickness range accessible with our set-up,
while keeping a fixed value of Γ /Γc = 3.5. For each thickness, three deceleration events
are analysed with high-speed PIV of both the cylinder and the suspension. The latter allows
us to verify that the front characteristics remain close to the heuristic features we adopted,
i.e. ∆θ ≈ π and a front velocity, Vf ≈ 1.1 m s−1, independent of h (insets of figure 7c).
We also verify that the cylinder velocity at the onset of deceleration (Ωc) is essentially
independent of h.

Figure 7(a) shows that the maximal deceleration rate obtained experimentally is well
captured by (3.9), both in magnitude and trend. It also indicates that the peak stress
during the deceleration, σmax = −IΩ̇max/(∆θhR2), can reach as much as 300 σc for the
thinnest layer. As for the instant of the maximal deceleration, the magnitude of tmax is
reasonably well captured by (3.10a,b) (see figure 7b), which consistently predicts that, for
all thicknesses investigated, the maximal deceleration of the cylinder occurs before the
time tout at which the front reaches the outer wall (tmax/tout < 1). However, the model is
found to underestimate the exact value, especially for thick layers. We will comment this
point in the next paragraph.

Finally, figure 7(c) compares (3.8) with the evolution of the cylinder velocity observed
during a whole deceleration event for a thickness h = 35 mm. The time origin is taken
at the onset of deceleration (Ω̇ = 0). The match in the maximal deceleration rate is
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F.M. Rocha, Y. Forterre, B. Metzger and H. Lhuissier

recovered but the deceleration rate at the beginning of the deceleration phase is found
to be overestimated by (3.8), which indicates that the initial growth of the thickened
region is not as fast as assumed by the model. This suggests that the thickened region
nucleates at a single locus on the cylinder wall and has to extend across the layer and
azimuthally before propagating radially only. This hypothesis is consistent with the initial
growth of the angular span of the front, ∆θ , observed at the layer surface (see figure 6a).
It is also in line with the slight underestimation of tmax by the model. Indeed, as shown
in figure 7(b,c), a better match is found for both the early stage of deceleration and
the arrival time, tout, by considering heuristically that the average front radius follows
Rf (t)/R = 1 +

√
L2 + (Vf t)2 − L, with L2 = R2 + (h/2)2, to account for the azimuthal

component, ∼ R, and the vertical component, ∼ h/2, an initially localized front has to
propagate through. Importantly, the maximal deceleration is almost unchanged by the lag,
provided h remains small relative to Rf ,max (see figure 7a).

As for the late stage of the deceleration, the model deviates from the measurements close
to the time, tout, at which the thickening front reaches the outer wall. This is consistent
because the leading edge of the front is not stress free anymore. However, the deviation is
not towards a stronger deceleration of the cylinder, as could be expected for a suspension
fully jammed from the cylinder to the wall, but towards an increasingly milder deceleration
until the cylinder eventually re-accelerates approximately trel ≈ 120 ms after the onset of
deceleration, i.e. ≈ 60 ms after tout (see figures 6e and 7c). This brings us to the question
of the release mechanism terminating the fast-deceleration phases.

3.3.4. Transitions from fast decelerations to slow accelerations
The deceleration of the cylinder results from the extension of the shear-thickened region.
On the other hand, shear thickening is conditioned to the shear stress sustained by the
suspension. If the latter typically decreases below the critical value σc at any radius inside
the thickened region, the front propagation should stop. This should in turn lead to a
large drop in shear stress all over the suspension. Since at this time the deceleration has
already reduced the cylinder velocity and the shear rate in the suspension significantly
relative to the critical condition for the nucleation of a new thickening front, the cylinder is
expected to enter a new acceleration phase (where the suspension is essentially unstressed
because most of the applied torque is absorbed by the accelerating cylinder). Therefore,
understanding the end of the deceleration phases requires understanding of the stress field
in the suspension.

To do so it is insightful to consider, first, the case of a sufficiently large vessel, for
which no interaction with the outer wall is expected. Conserving the same assumptions
as in § 3.3.3 and applying the angular momentum theorem to the cylinder and thickened
suspension up to a fixed radius r, the shear stress in the expanding thickened region (r <
Rf ) follows

σ (r, t) = −(I + S<r)Ω̇

∆θhr2 = −1 + α(r3/R3 − 1)

r2/R2
IΩ̇

∆θhR2 , (3.11)

with S<rΩ(t) the angular moment of the thickened suspension at radii below r. The stress
is minimal at the same radius, rmin " (2/α)1/3R, regardless of time, and it evolves as
(using 3.8)

σmin(t) "
3ρRΩcVf

22/3

(
t

τdec

)−4
. (3.12)
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Drag of a shear-thickening suspension on a rotating cylinder
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Figure 8. Late part of the deceleration phase: release. (a) Velocity profiles in the suspension (azimuthal
velocity component, same direction as in figure 6) between the front arrival time, tout (Rf = Rout), and
the release time, trel (onset of re-acceleration, Ω̇ = 0). (b) Release velocity. The mean observed value is
Ωrel " 0.24Ωc. (c) Release time relative to the front arrival time (time origin at the onset of the deceleration
phase). Symbols: experiments. The solid line indicates the upper bound trel ≤ 2tout of (3.15), see text. The
mean observed value is trel " 2.0tout.

This means that the release condition, when the shear stress becomes typically lower
than σc, is expected at a time and a front position given by

trel,∞ " τdec

(
3

22/3
Vf

RΩc
Re

)1/4
, Rf ,rel " R

(
3

22/3
Vf

RΩc
Re

)1/4
α−1/3, (3.13a,b)

respectively, where

Re = ρR2Ω2
c

σc
∼ ρR2γ̇c

η0
, (3.14)

is the typical Reynolds number at the onset of the deceleration phase. Since σc ∼ η0γ̇c
and both Ωc and Vf scale like γ̇c, the Reynolds number is essentially the square of the
ratio between the cylinder size R and the characteristic viscous length

√
η0/ργ̇c of the

suspension. In the experiments Re ≈ 5 implies Rf ,rel ! 12R, which means that the release
stress, ≈ σc, is not expected to be reached before the front arrives at the outer wall (Rout "
6.8R), even for the thickest suspension layer. This is consistent with the observation that, in
all the experiments, the re-acceleration of the cylinder (t = trel) is posterior to the arrival
of the front at the outer wall (t = tout).

In this case the interaction of the front with the wall has to be considered. High stresses
should develop as the thickened region reaches the wall, and one could expect that the
cylinder would re-accelerate only after a reflected shear front propagating inward (i.e. a
stop front with even higher stresses and a low velocity for r > Rf ) has reached the cylinder
or decreased the stress below σc. Such an inward-propagating wave of low velocity is
indeed observed systematically in experiments (see figure 8a). However, modelling the
influence of a stop front on the cylinder deceleration under the same assumptions as in
§ 3.3.3 does not match, quantitatively, the observations for t > tout. Indeed, as discussed in
Appendix A, if the dissipation law of the front is assumed to be unchanged by the reflection
on the wall, the cylinder deceleration is expected to be slightly larger for a reflected front
than for an ever outward-propagating front (sufficiently large vessel), whereas the observed
deceleration is actually milder. This suggests that departure from axial symmetry may
have a more significant effect on the stress field in the suspension after the interaction
of the front with the wall than before, or that the front interaction with the wall leads to
either an elastic response of the suspension (Larsen et al. 2010) or to out-of-plane motion,
facilitating the release of stress.
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Figure 9. Effective drag of the suspension. (a) The local rheological flow rule is strongly re-entrant for σ > σc.
(b) The average cylinder velocity, 〈Ω〉, is marginally re-entrant for Γ > Γc: it essentially saturates at a value
of order Ωc ≈ γ̇c/2 because of the periodic instability of the suspension flow. Solid line: average velocity,
τ−1 ∫ τ

0 Ω(t) dt, expected from (3.3) with Ωrel = Ωc/4 (i.e. t′ = (I/4πη0hR2) ln(1 − Γc/4Γ )). Symbols:
measurements obtained for an increasing ramp of applied torque (short-time averaging of the data of
figure 3(a)).

Nevertheless, the observation of an inward-propagating stop front suggests that the
typical re-acceleration time (relative to the onset of deceleration) should follow

trel " 2
Rout − R

Vf
. (3.15)

Equation (3.15) is found to be consistent with the measurements presented in figure 8(b).
The observed re-acceleration time is found to be trel ≈ 2tout for all layer thicknesses
without significant dependence on the latter. Similarly, the cylinder release velocity is
found to be close to Ωrel ≈ Ωc/4 without significant dependence on h. While this is
compatible with the idea that the front reflection at the wall leads to the stress release,
which allows the cylinder re-acceleration, further investigations would be required to be
conclusive.

3.4. Effective drag on the cylinder
The quantitative picture of the dynamics obtained in the previous sections allows us to
model the effective drag (time-averaged drag) of the suspension on the cylinder, for both
steady and unsteady regimes, that is, for any value of the applied torque.

Below Γc, the motion is steady and a quasi-Newtonian drag, Γ " 4πη0hR2Ω , is
expected. Above Γc, the cylinder velocity oscillates between a fraction of Ωc and Ωc,
whose value Ωc ≈ γ̇c/2 is independent of the applied torque. This means that the average
velocity 〈Ω〉 =

∫ τ
0 Ω(t) dt/τ is expected to saturate at a value of order γ̇c/2, almost

independently of the applied torque, or, equivalently, that the effective drag–velocity
curve of the cylinder should be infinitely steep at Ω ≈ γ̇c/2. More precisely, in the limit
when the duration of the deceleration phase can be neglected, the average of the velocity
given by (3.3) is expected to decrease only minimally from 〈Ω〉 = Ωc at Γc to 〈Ω〉 =
(Ωc + Ωrel)/2 ≈ 0.6Ωc for larger torques (for Γ /Γc ! IVf /4πη0hR2(Rout − R) ≈ 20, the
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Drag of a shear-thickening suspension on a rotating cylinder

deceleration phase has to be considered, but this only marginally changes the expectation
to 〈Ω〉 ≈ 0.5Ωc).

As shown in figure 9, this simple model is found to capture the main characteristics of
the effective drag–velocity curve obtained experimentally by ramping up the torque from
Γ /Γc ≈ 0.2 to over 90 (the data are obtained by a short-time averaging of those presented
in figure 3a). Although the drag–velocity curve obtained by averaging (3.3) is slightly
re-entrant for applied torques above Γc, it is found to be in agreement with the experimental
average velocity within a factor two over the almost three orders of magnitude variation in
applied torque.

4. Discussion and conclusions
The experiments and analyses presented above provide a simple picture of the dynamics
of a shear-thickening suspension driven by a rotating cylinder. For low applied
torques the flow is steady. The drag is close to Newtonian and set by the low-stress
branch of the rheology. Above the onset torque for discontinuous shear thickening,
Γc, the average velocity of the cylinder saturates, while large periodic oscillations
are observed. Long phases of slow acceleration are followed by short phases of
high deceleration, which are triggered by the propagation of a thickening front, and
so on. The front is found to nucleate when the shear rate at the cylinder surface
reaches, typically, the discontinuous shear-thickening threshold (γ̇ ≥ γ̇c), i.e. when the
rotation rate, Ω , compares with the critical shear rate, ∼ γ̇c/2 (3.4). The oscillation
period is controlled by the slow acceleration phases, ∼ τacc(Γ /Γc) ln(1/(1 − Γc/Γ )) ∼
(I/η0R2h) ln(1/(1 − Γc/Γ )) (3.3), the duration of which is set by the applied torque and
cylinder inertia. The peak stress, σmax (3.9), and intrinsic time scale of the deceleration,
τdec (3.8), also involve the inertia of the suspension. However, in the present case of an
insufficiently large gap, the duration of the deceleration phases, ∼ tout (3.15), is set by the
propagation time of the front across the gap. Several important conclusions can be drawn
from these analyses.

The first one concerns the oscillations and their time scales. As mentioned in the
introduction, similar velocity oscillations have been reported in small-gap Couette flows
(Boersma et al. 1991; Lootens et al. 2003; Nagahiro et al. 2013; Hermes et al. 2016; Rathee
et al. 2017; Chacko et al. 2018; Saint-Michel et al. 2018; Richards et al. 2019; Ovarlez
et al. 2020; Sedes et al. 2020; Gauthier et al. 2021). In this case, the oscillations have been
explained as limit cycles involving the tool inertia and a uniformly sheared suspension
with a relaxing shear-thickening rheology (Richards et al. 2019). This formalism predicts
small-amplitude oscillations, close to the instability onset torque, and oscillations with
a strict stop, for higher torques. It also requires a second rheological relaxation scale
(time scale) to reproduce the periodic oscillations reported experimentally. However, in
the large-gap experiments presented above no small-amplitude oscillation is observed.
The amplitude of the oscillations is found to be of order one, including just above the
onset torque for unsteadiness (≈ Γc), and the tool is never close to stopping, even for much
larger torques. Moreover, none of the oscillation time scales reflect the intrinsic rheological
time scale, γ0/γ̇c, only. All time scales of the oscillation, including those for the

deceleration phases (τdec ∼ γ0
γ̇c

(
ρhR4

I

)−1/3
and trel,∞ ∼ τdec

(
Re
γ0

)1/4
∼ τdec

(
γ̇c
γ0

ρR2

η0

)1/4

or tout ∼ γ0
γ̇c

Rout
R depending, respectively, on whether the vessel is large enough or not),

also involve the suspension inertia, the cylinder inertia or the gap size and parameters
of the steady rheology. As for small-gap configurations, it is not possible to conclude
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on whether there is also a single thickened region for each oscillation. However, it is
worth noticing that, in the small-gap limit, the propagation time of the front across the
gap is typically the intrinsic rheological time scale, γ0/γ̇c (indeed for a gap width w,
it is tout = w/Vf ∼ γ0w/RΩc ∼ γ0/γ̇c). Therefore, both times are of order a fraction of
a second for a dense aqueous suspension of cornstarch and compare with the typical
oscillation periods reported for small-gap configurations.

Second, and as detailed in § 3.4, the picture discussed above illustrates how a steep,
but marginally re-entrant, effective drag curve can emerge from the strongly re-entrant
rheology of the suspension. Because of the large inertia of the cylinder (α * 1) the
condition for the nucleation of a thickening front (γ̇ ≥ γ̇c) sets a maximal cylinder velocity,
Ωc ≈ γ̇c/2, which is, essentially, independent of the applied torque. This implies that the
average velocity, 〈Ω〉, saturates at a value ∼ γ̇c. This saturation is a direct consequence of
the flow instability, which means that the drag is intrinsically inertial above Γc. Ironically,
it turns out that a very similar effective drag curve would be expected if the flow was stable
for shear stresses above σc. Indeed, the steady shear stress follows σ/σc = (Γ /Γc)(R2/r2),
which means that, for a fully re-entrant flow curve as in figure 9(a), the suspension
would be jammed for radii below rJ ≈ R(Γ /Γc)

1/2 and frictionless beyond. Therefore,
the steady rotation velocity of the ‘cylinder plus jammed suspension’ would also be
≈ Γ /4πη0hr2

J = Ωc, independently of the applied torque (above Γc). Nonetheless, this
match should not be given too much significance. It omits the order-one fluctuations
of the motion as well as the inertial nature of the drag and it is merely coincidental.
Indeed, the two scenarios (saturation by an instability at the velocity for which the shear
stress at the solid surface is critical, or steady saturation when the drag of the ‘solid plus
jammed suspension’ balances the applied force) do not predict the same average velocity
for other configurations such as the drag of a translating cylinder or a translating sphere,
for instance.

Third, and as briefly evoked in § 3.3.2, the criterion for the onset of unsteadiness,
Ω ! Ωc (or, equivalently, σ |r=R ! σc), is not expected to be strict nor independent of any
other consideration. Indeed, for a Wyart–Cates rheology with a single relaxation scale,
γ0, the dynamics for a slowly accelerating cylinder is expected to depend not only on the
current velocity relative to the critical (Ω/Ωc) but also on the critical Reynolds number,
Re/γ0 ∼ ρR2Ωc/(γ0η0), which is the ratio between the typical viscous time, ρR2/η0, and
the intrinsic rheological time, γ0/γ̇c. In the present case where Re/γ0 ≈ 30, the onset
of instability is actually observed for Ω ≈ Ωc, while the destabilization consists in the
nucleation and fast expansion of a thickened region resulting in a peak torque that is
non-correlated with the applied torque. It remains to be studied whether the onset velocity
can be significantly shifted by varying the Reynolds number (as for zero-dimensional
(Richards et al. 2019) or long-wavelength linear models (Darbois Texier et al. 2023),
as well as whether the mode of destabilization is significantly altered for low Reynolds
numbers or not.

Last, the role of the vessel and the release mechanism deserve a comment. In the present
experiments, the thickening front interacts with the outer wall of the vessel before the
cylinder re-accelerates, which means that some momentum is transferred to the vessel.
This is certainly also the case for small-gap configurations, but the analysis considering
the deceleration in a large vessel presented in § 3.3.3 (Rout ≥ Rf ,rel) suggests that this is not
mandatory and that periodic oscillations could also be observed in a large or open system.
As for the condition for the fading of the thickening front, it is certainly more complex than
a decrease of the stress below σc somewhere within the thickened region. It might actually
be that the stress remains below the critical stress, σJ , at which the steady-state rheology
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Drag of a shear-thickening suspension on a rotating cylinder

is jammed for a significant deformation, ∼ γ0. Indeed, for a strain-relaxing Wyart–Cates
rheology, a purely propagative front is possible only for a stress jump above σJ , while the
thinning of the suspension requires a typical deformation γ0. These subtleties should not
change, significantly, the expectation for the onset of the re-acceleration (trel), but they
call for further studies to understand better the details of the release mechanism with or
without interaction of the front with a wall.

All these considerations emphasize the importance of considering not only the rheology
of the suspension but also its hydrodynamics and the interaction with the often large
inertia of the moving solid to understand the unsteady flow of shear-thickening suspensions
driven by a moving solid above the thickening threshold. They might prove useful for
understanding other drags or flows, such as those past a sphere or a cylinder.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.624.
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Appendix A. Stress and deceleration for a reflected front
This appendix derives the deceleration of the cylinder and the shear stress in the
suspension, which would be expected after the thickening front reaches the outer wall
(t > tout) if the front was reflected by the wall into an inward-propagating thickening front
(stop front) preserving the axial symmetry of the flow.

For an inward-propagating front, the outer side of the front is not stress free as during the
initial (outward-propagating) front. Under the same assumptions as in § 3.3.3, the angular
momentum balance of the cylinder and flow motion becomes

IΩ(t) + S(t)Ω(t) = IΩc −
∫ t

tout

Γout dt′, for t ≥ tout, (A1)

with Γout the resistive torque applied by the outer wall.
The thickening fronts are propagative structures, which are intrinsically dissipative.

Assuming that the dissipation relation of the reflected front is the same as for the initial
front (i.e. half the kinetic energy flux across the front), implies that the torque follows
Γout = −2ṠΩ(t), which is positive since Ṡ = −ρ∆θhR2Vf < 0. This yields

Ω(t) = I(I + S(t))
(I + S|t=tout)

2 Ωc, for t ≥ tout, (A2)

which matches, in t = tout, the velocity Ω = (I/(I + S))Ωc obtained for the initial front
(3.7). Consistently, for a reflected front with the same velocity as the initial one, the
deceleration is also continuous at t = tout. After tout, the deceleration predicted by (A2)
is slightly larger, though close in practice, than the one expected in the absence of outer
wall (3.7).
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Similarly, the minimal stress in the suspension is not much different from the one
expected in the absence of outer wall (3.12). Indeed, the relation (3.11) between the stress
on the inner side of the front (r < Rf ) and the cylinder deceleration, i.e.

σ (r, t) = −(I + S<r)Ω̇

∆θhr2 = −1 + α(r3/R3 − 1)

r2/R2
IΩ̇

∆θhR2 , (A3)

remains valid. Accordingly the stress is minimal at the same radius rmin " (2/α)1/3R,
provided rmin ≤ Rf , or at the inner side of the front (r = Rf ), otherwise. Therefore the
minimal stress is expected to follow

σmin(t) " 3
(α

2

)2/3 I2

(I + S|t=tout)
2 ρRΩcVf , for Rf ≥ rmin, (A4)

σmin(t) " I(I + S)

(I + S|t=tout)
2 ρRΩcVf , for Rf ≤ rmin. (A5)
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